

Creation and Application of TiBTA Nanoporous Metallic Foams (NMFs) in Reduced Gravity

Problem Statement

Nanoporous metal foams (NMFs) created in a microgravity environment have been of superior quality when compared to NMFs created under normal terrestrial conditions.

Given the high, multi-industry demand for materials exhibiting properties of high strength and low weight, research in titanium-based NMFs is highly relevant to NASA. Other applications: solar cells, biomedicine – osseointegration.

Several studies have demonstrated the superior porosity distribution of titanium-based NMFs created under microgravity conditions. Beyond the aforementioned data, however, little is known about the manner in which titanium-based NMFs created in microgravity conditions differ from the foams created in terrestrial conditions.

Technology Development Team

- Principal Investigator:
 Kristen OMara-Scotti,
 Northwestern University
 KristenOmara2014@u.northwestern.edu
- Organization (funding support):
 Northwestern University,
 339 E. Chicago Ave.,
 Chicago, IL 60611
 (312) 503-3009

 Contact: Peter Kaye,
 Assistant Dean of Undergraduate

and Professional Programs

Proposed Flight Experiment

Experiment Readiness:

 The experiment will be ready for flight at the beginning of the first quarter of 2013.

Test Vehicles:

· Parabolic Flight

Test Environment:

 The apparatus has previously flown on a parabolic flight as part of NASA's Reduced Gravity Student Flight Program.

Test Apparatus Description:

 The apparatus consists of a polycarbonate box which houses a power supply, camera and sample chamber. The sample chamber contains the reaction and resulting NMF.

Technology Maturation

- The research is currently classified as a TRL level 7, in that the research meets the specifications of level 7 in terms of hardware, software and exit criterion.
- The apparatus is currently ready for flight.

Objective of Proposed Experiment

Objective: To create superior quality, titanium-based nanoporous metallic foams in a microgravity environment and elucidate the differences between that and ground-based samples. Model solar cells and sandwich panel cores incorporating the foam will also be prototyped to serve as a precursor mission for possible follow up on the International Space Station.

Hypothesis: Titanium-based NMFs created in microgravity conditions will exhibit enhancement in high porosity with a uniform pore distribution. Such enhancement will improve efficiency of solar cells and sandwich panel cores.

Applicable Technology Areas: Nano Lightweight Materials and Structures 10.1.1, Nano Energy Generation 10.2.1, Solar Power and Generation 3.1.3 (Level 3)